资源类型

期刊论文 697

年份

2023 38

2022 37

2021 39

2020 32

2019 55

2018 34

2017 24

2016 30

2015 20

2014 36

2013 37

2012 45

2011 27

2010 61

2009 63

2008 30

2007 19

2006 13

2005 11

2004 3

展开 ︾

关键词

悬索桥 15

泰州大桥 9

苏通大桥 9

斜拉桥 8

桥梁 8

三塔悬索桥 4

创新 4

南京长江第四大桥 4

钢箱梁 4

TRIP钢 3

力学性能 3

承载力 3

BNLAS 2

DX桩 2

PP 2

一阶分析法 2

三塔两跨悬索桥 2

主缆 2

京津城际铁路 2

展开 ︾

检索范围:

排序: 展示方式:

Precast steelUHPC lightweight composite bridge for accelerated bridge construction

Shuwen DENG, Xudong SHAO, Xudong ZHAO, Yang WANG, Yan WANG

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 364-377 doi: 10.1007/s11709-021-0702-3

摘要: In this study, a fully precast steel–ultrahigh performance concrete (UHPC) lightweight composite bridge (LWCB) was proposed based on Mapu Bridge, aiming at accelerating construction in bridge engineering. Cast-in-place joints are generally the controlling factor of segmental structures. Therefore, an innovative girder-to-girder joint that is suitable for LWCB was developed. A specimen consisting of two prefabricated steel–UHPC composite girder parts and one post-cast joint part was fabricated to determine if the joint can effectively transfer load between girders. The flexural behavior of the specimen under a negative bending moment was explored. Finite element analyses of Mapu Bridge showed that the nominal stress of critical sections could meet the required stress, indicating that the design is reasonable. The fatigue performance of the UHPC deck was assessed based on past research, and results revealed that the fatigue performance could meet the design requirements. Based on the test results, a crack width prediction method for the joint interface, a simplified calculation method for the design moment, and a deflection calculation method for the steel–UHPC composite girder in consideration of the UHPC tensile stiffness effect were presented. Good agreements were achieved between the predicted values and test results.

关键词: accelerated bridge construction     ultrahigh-performance concrete     steel–UHPC composite bridge     UHPC girder-to-girder joint    

Innovative steel-UHPC composite bridge girders for long-span bridges

Xudong SHAO, Lu DENG, Junhui CAO

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 981-989 doi: 10.1007/s11709-019-0531-9

摘要: Steel and steel-concrete composite girders are two types of girders commonly used for long-span bridges. However, practice has shown that the two types of girders have some drawbacks. For steel girders, the orthotropic steel deck (OSD) is vulnerable to fatigue cracking and the asphalt overlay is susceptible to damage such as rutting and pot holes. While for steel-concrete composite girders, the concrete deck is generally thick and heavy, and the deck is prone to cracking because of its low tensile strength and high creep. Thus, to improve the serviceability and durability of girders for long-span bridges, three new types of steel-UHPC lightweight composite bridge girders are proposed, where UHPC denotes ultra-high performance concrete. The first two types consist of an OSD and a thin UHPC layer while the third type consists of a steel beam and a UHPC waffle deck. Due to excellent mechanical behaviors and impressive durability of UHPC, the steel-UHPC composite girders have the advantages of light weight, high strength, low creep coefficient, low risk of cracking, and excellent durability, making them competitive alternatives for long-span bridges. To date, the proposed steel-UHPC composite girders have been applied to 14 real bridges in China. It is expected that the application of the new steel-UHPC composite girders on long-span bridges will have a promising future.

关键词: steel-UHPC composite bridge girder     long-span bridge     orthotropic steel deck     fatigue cracking     durability    

Field validation of UHPC layer in negative moment region of steel-concrete composite continuous girderbridge

Minghong QIU; Xudong SHAO; Weiye HU; Yanping ZHU; Husam H. HUSSEIN; Yaobei HE; Qiongwei LIU

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 744-761 doi: 10.1007/s11709-022-0843-z

摘要: Improving the cracking resistance of steel-normal concrete (NC) composite beams in the negative moment region is one of the main tasks in designing continuous composite beam (CCB) bridges due to the low tensile strength of the NC deck at pier supports. This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete (UHPC) layer. In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region, field load testing was conducted on a newly built full-scale bridge. The newly designed structural configuration was described in detail regarding the structural characteristics (cracking resistance, economy, durability, and constructability). In the field investigation, strains on the surface of the concrete bridge deck, rebar, and steel beam in the negative bending moment region, as well as mid-span deflection, were measured under different load cases. Also, a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results. The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results. This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam.

关键词: field test     steel-concrete composite beam     continuous girder bridge     negative bending moment region     ultrahigh performance concrete    

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concretecomposite beam

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 704-721 doi: 10.1007/s11709-023-0941-6

摘要: In this study, the flexural and longitudinal shear performances of two types of precast lightweight steel–ultra-high performance concrete (UHPC) composite beams are investigated, where a cluster UHPC slab (CUS) and a normal UHPC slab (NUS) are connected to a steel beam using headed studs through discontinuous shear pockets and full-length shear pockets, respectively. Results show that the longitudinal shear force of the CUS is greater than that of the NUS, whereas the interfacial slip of the former is smaller. Owing to its better integrity, the CUS exhibits greater flexural stiffness and a higher ultimate bearing capacity than the NUS. To further optimize the design parameters of the CUS, a parametric study is conducted to investigate their effects on the flexural and longitudinal shear performances. The square shear pocket is shown to be more applicable for the CUS, as the optimal spacing between two shear pockets is 650 mm. Moreover, a design method for transverse reinforcement is proposed; the transverse reinforcement is used to withstand the splitting force caused by studs in the shear pocket and prevent the UHPC slab from cracking. According to calculation results, the transverse reinforcement can be canceled when the compressive strength of UHPC is 150 MPa and the volume fraction of steel fiber exceeds 2.0%.

关键词: precast steel–UHPC composite beam     flexural performance     longitudinal shear performance     parametric study     transverse reinforcement ratio    

Fatigue evaluation of steel-concrete composite deck in steel truss bridge——A case study

Huating CHEN; Xianwei ZHAN; Xiufu ZHU; Wenxue ZHANG

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1336-1350 doi: 10.1007/s11709-022-0852-y

摘要: An innovative composite deck system has recently been proposed for improved structural performance. To study the fatigue behavior of a steel-concrete composite bridge deck, we took a newly-constructed rail-cum-road steel truss bridge as a case study. The transverse stress history of the bridge deck near the main truss under the action of a standard fatigue vehicle was calculated using finite element analysis. Due to the fact that fatigue provision remains unavailable in the governing code of highway concrete bridges in China, a preliminary fatigue evaluation was conducted according to the fib Model Code. The results indicate that flexural failure of the bridge deck in the transverse negative bending moment region is the controlling fatigue failure mode. The fatigue life associated with the fatigue fracture of steel reinforcement is 56 years. However, while the top surface of the bridge deck concrete near the truss cracks after just six years, the bridge deck performs with fatigue cracks during most of its design service life. Although fatigue capacity is acceptable under design situations, overloading or understrength may increase its risk of failure. The method presented in this work can be applied to similar bridges for preliminary fatigue assessment.

关键词: Fatigue assessment     composite bridge deck     rail-cum-road bridge     fatigue stress analysis     Model Code    

Pretest analysis of shake table response of a two-span steel girder bridge incorporating acceleratedbridge construction connections

Elmira SHOUSHTARI, M. Saiid SAIIDI, Ahmad ITANI, Mohamed A. MOUSTAFA

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 169-184 doi: 10.1007/s11709-019-0590-y

摘要: This paper presents pretest analysis of a shake table test model of a 0.35-scale, two-span, steel plate girder bridge. The objective of pretest analysis was to obtain an insight on the seismic response of the bridge model during the shake table tests. The bridge included seat type abutments, full-depth precast deck panels, and a two-column bent in which columns were pinned to the footing and integral with superstructure. Six accelerated bridge construction connections were incorporated in the bridge model. An analytical model was developed in OpenSees and was subjected to ten input bi-directional earthquake motions including near-fault and far-field records. The overall seismic response of the bridge was satisfactory for all the earthquake records at 100%, 150%, and 200% design level. All connections and capacity-protected components remained elastic, and the average ductility capacity surpassed the ductility demand even at 200% design level. Using experimental fragility curves developed for RC bridge columns, it was predicted that there was a probability of 45% that columns would undergo the imminent failure in the last run and a probability of 30% for their failure.

关键词: shake table test     accelerated bridge construction     steel girder bridge     OpenSEES     UHPC     simple for dead continuous for live    

Bending performance of composite bridge deck with T-shaped ribs

Qingtian SU, Changyuan DAI, Xu JIANG

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 990-997 doi: 10.1007/s11709-019-0532-8

摘要: This paper proposes a new type of steel-concrete composite deck, which is composed of orthotropic steel deck (OSD) with T-shaped ribs, concrete plate and studs connecting OSD and concrete plate. The OSD can act as framework for concrete plate and contribute to load bearing capacity at the same time, which could save construction time. Compared with conventional OSD system, this new type of composite bridge deck can also improve fatigue performance. Considering that this type of composite deck is not yet applied in practical engineering and its mechanical performance is not revealed in previous literatures, two full-scale specimens were designed and manufactured in this research. The mechanical performance, particularly, bending capacity in positive and negative region was carefully tested and analyzed. The load-deflection curve, load-slip relation, strain distribution in concrete and steel were obtained. The test results showed that the plastic performance of this kind of composite bridge deck was satisfying and the bending capacity was high.

关键词: bending performance     composite bridge deck     T-shaped steel ribs    

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 895-904 doi: 10.1007/s11709-021-0759-z

摘要: This research investigated a pavement system on steel bridge decks that use epoxy resin (EP) bonded ultra-high performance concrete (UHPC). Through FEM analysis and static and dynamic bending fatigue tests of the composite structure, the influences of the interface of the pavement layer, reinforcement, and different paving materials on the structural performance were compared and analyzed. The results show that the resin bonded UHPC pavement structure can reduce the weld strain in the steel plate by about 32% and the relative deflection between ribs by about 52% under standard axial load conditions compared to traditional pavements. The EP bonding layer can nearly double the drawing strength of the pavement interface from 1.3 MPa, and improve the bending resistance of the UHPC structure on steel bridge decks by about 50%; the bending resistance of reinforced UHPC structures is twice that of unreinforced UHPC structure, and the dynamic deflection of the UHPC pavement structure increases exponentially with increasing fatigue load. The fatigue life is about 1.2 × 107 cycles under a fixed force of 9 kN and a dynamic deflection of 0.35 mm, which meets the requirements for fatigue performance of pavements on steel bridge decks under traffic conditions of large flow and heavy load.

关键词: steel bridge deck pavement     ultra-high-performance concrete     epoxy resin     composite structure     bending fatigue performance    

Trial design of arch bridge of composite box section with steel web-concrete flange

Jiangang WEI, Qingwei HUANG, Baochun CHEN,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 370-375 doi: 10.1007/s11709-010-0073-7

摘要: The concrete arch bridge is a natural and appropriate structural solution, aesthetically pleasing and easily integrated into the environment, especially in mountainous and island areas. However, construction difficulty and cost will increase with heavy self-weight when the span enlarges. A potential solution is to use a composite box arch ring with steel web-concrete flange. Taking Wanzhou Yangtze River Bridge (the longest concrete arch bridge in the world with a main span of 420 m) as a prototype, trial designs of a composite box arch with steel webs (including corrugated steel webs and plain steel webs) and concrete flanges were carried out. Comparison of quantities and structural behaviors of the prototype concrete arch with the two trial designed composite arch was presented. It is shown that the self-weight of the composite arch can reduce about 28% and the structures can meet the design requirements, therefore it is possible to use the two composite arches in long span arch bridges.

关键词: steel webs     concrete     box arch     trial design     structural behaviors     finite element method    

钢桥梁电弧喷涂纳米封闭复合涂层体系设计

易春龙,沈旺,童育强,刘国彬,于旭东

《中国工程科学》 2010年 第12卷 第7期   页码 53-56

摘要:

为了解决大型桥梁钢箱梁的长效防腐蚀问题,以浙江舟山连岛工程西堠门大桥防腐蚀工程为依托,结合电弧喷涂防腐蚀技术和纳米改性封闭涂层技术,提出了电弧喷涂纳米封闭复合涂层体系的设计思路,对比了电弧喷涂长效防腐传统方案与创新设计方案,对不同腐蚀环境下推荐设计采用不同的电弧喷涂金属涂层材料,对比分析了纳米封闭涂层与普通环氧底层的技术指标,简述了电弧喷涂纳米封闭复合涂层施工各工序的质量要求和检测方法。

关键词: 电弧喷涂     复合涂层     纳米材料     钢桥梁     防腐蚀    

Technological development and engineering applications of novel steel-concrete composite structures

Jianguo NIE, Jiaji WANG, Shuangke GOU, Yaoyu ZHU, Jiansheng FAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 1-14 doi: 10.1007/s11709-019-0514-x

摘要:

In view of China’s development trend of green building and building industrialization, based on the emerging requirements of the structural engineering community, the development and proposition of novel resource-saving high-performance steel-concrete composite structural systems with adequate safety and durability has become a kernel development trend in structural engineering. This paper provides a state of the art review of China’s cutting-edge research and technologies in steel-concrete composite structures in recent years, including the building engineering, the bridge engineering and the special engineering. This paper summarizes the technical principles and applications of the long-span bi-directional composite structures, the long-span composite transfer structures, the comprehensive crack control technique based on uplift-restricted and slip-permitted (URSP) connectors, the steel plate concrete composite (SPCC) strengthen technique, and the innovative composite joints. By improving and revising traditional structure types, the comprehensive superiority of steel-concrete composite structures is well elicited. The research results also indicate that the high-performance steel-concrete composite structures have a promising popularizing prospect in the future.

关键词: high-performance composite structure     bi-directional composite     composite transfer     uplift-restricted and slip-permitted connectors     steel plate concrete composite strengthen    

Seismic performance of fabricated continuous girder bridge with grouting sleeve-prestressed tendon composite

《结构与土木工程前沿(英文)》   页码 827-854 doi: 10.1007/s11709-023-0954-1

摘要: The seismic performance of a fully fabricated bridge is a key factor limiting its application. In this study, a fiber element model of a fabricated concrete pier with grouting sleeve-prestressed tendon composite connections was built and verified. A numerical analysis of three types of continuous girder bridges was conducted with different piers: a cast-in-place reinforced concrete pier, a grouting sleeve-fabricated pier, and a grouting sleeve-prestressed tendon composite fabricated pier. Furthermore, the seismic performance of the composite fabricated pier was investigated. The results show that the OpenSees fiber element model can successfully simulate the hysteresis behavior and failure mode of the grouted sleeve-fabricated pier. Under traditional non-near-fault ground motions, the pier top displacements of the grouting sleeve-fabricated pier and the composite fabricated pier were less than those of the cast-in-place reinforced concrete pier. The composite fabricated pier had a good self-centering capability. In addition, the plastic hinge zones of the grouting sleeve-fabricated pier and the composite fabricated pier shifted to the joint seam and upper edge of the grouting sleeve, respectively. The composite fabricated pier with optimal design parameters has good seismic performance and can be applied in high-intensity seismic areas; however, the influence of pile-soil interaction on its seismic performance should not be ignored.

关键词: seismic performance     continuous girder bridge     grouting sleeve-prestressed tendon composite connections     grouted sleeve connection     design parameters    

港珠澳大桥设计理念及桥梁创新技术

孟凡超,刘明虎,吴伟胜,张革军,张 梁

《中国工程科学》 2015年 第17卷 第1期   页码 27-35

摘要:

介绍了港珠澳大桥的工程概况、建设目标和总体设计方案,重点阐述了以“大型化、工厂化、标准化、装配化”的设计理念和总体原则指导下,设计采用的新材料、新技术、新工艺、新设备。创新技术的应用,为提高工程品质、确保设计使用寿命提供了坚实基础和有利保障。

关键词: 钢管复合桩;埋床法预制墩台;?75 mm预应力粗钢筋;正交异性钢桥面板;1 860 MPa斜拉索; 减隔震    

Evolution of composite fouling on a vertical stainless steel surface caused by treated sewage

Cheng ZAN, Lin SHI, Xiujuan MA, Wenyan YANG,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 171-180 doi: 10.1007/s11708-009-0068-z

摘要: Composite biological and inorganic fouling occurs in plate heat exchangers (PHEs) using treated sewage as heat transfer medium, which lowers the heat transfer coefficient and increases the frictional resistance. In order to optimize the heat exchange process and improve the anti-fouling strategies, the dynamic behavior of composite fouling at a vertical surface of stainless steel (ANSI 316L) was investigated under typical conditions of PHEs. The growth curves of composite fouling were obtained. The evolution of composite fouling was characterized by means of environmental scanning electron microscopy (ESEM). Backscattered Electron Image (BEI) and energy dispersive X-ray spectrometry (EDS) were used as aids in interpreting the results. The experimental results show that a preliminary stage of a 6-day period with a low fouling growth rate exists during the composite fouling development. A significant change of the fouling growth rate happens after the preliminary stage during which the bacterial behaviors at the surface could be recorded clearly. After the preliminary stage, a space net-shape, mainly consisting of bacteria, extracellular products (EPS) and inorganic particles, could be established on the surface of the fouling layer. The change of fouling growth rate occurs synchronously with the evolution.

关键词: treated sewage     plate heat exchanger     stainless steel     composite fouling     biofouling    

复合浇筑式沥青钢桥面铺装层力学计算

朱华平,李国芬,曹牧,王宏畅

《中国工程科学》 2013年 第15卷 第8期   页码 60-62

摘要:

钢桥面铺装的病害在大跨径桥梁上仍然很常见,钢桥面铺装已经成为制约大跨径桥梁发展的一个难题。本文采用有限元法对复合浇筑式沥青铺装层进行受力分析,将正交异性钢桥面板、铺装层作为整体,建立有限元模型,研究铺装层在行车荷载作用下的应力、应变规律。

关键词: 道路工程     钢箱梁     有限元模型     应力、应变特性     动力响应    

标题 作者 时间 类型 操作

Precast steelUHPC lightweight composite bridge for accelerated bridge construction

Shuwen DENG, Xudong SHAO, Xudong ZHAO, Yang WANG, Yan WANG

期刊论文

Innovative steel-UHPC composite bridge girders for long-span bridges

Xudong SHAO, Lu DENG, Junhui CAO

期刊论文

Field validation of UHPC layer in negative moment region of steel-concrete composite continuous girderbridge

Minghong QIU; Xudong SHAO; Weiye HU; Yanping ZHU; Husam H. HUSSEIN; Yaobei HE; Qiongwei LIU

期刊论文

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concretecomposite beam

期刊论文

Fatigue evaluation of steel-concrete composite deck in steel truss bridge——A case study

Huating CHEN; Xianwei ZHAN; Xiufu ZHU; Wenxue ZHANG

期刊论文

Pretest analysis of shake table response of a two-span steel girder bridge incorporating acceleratedbridge construction connections

Elmira SHOUSHTARI, M. Saiid SAIIDI, Ahmad ITANI, Mohamed A. MOUSTAFA

期刊论文

Bending performance of composite bridge deck with T-shaped ribs

Qingtian SU, Changyuan DAI, Xu JIANG

期刊论文

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

期刊论文

Trial design of arch bridge of composite box section with steel web-concrete flange

Jiangang WEI, Qingwei HUANG, Baochun CHEN,

期刊论文

钢桥梁电弧喷涂纳米封闭复合涂层体系设计

易春龙,沈旺,童育强,刘国彬,于旭东

期刊论文

Technological development and engineering applications of novel steel-concrete composite structures

Jianguo NIE, Jiaji WANG, Shuangke GOU, Yaoyu ZHU, Jiansheng FAN

期刊论文

Seismic performance of fabricated continuous girder bridge with grouting sleeve-prestressed tendon composite

期刊论文

港珠澳大桥设计理念及桥梁创新技术

孟凡超,刘明虎,吴伟胜,张革军,张 梁

期刊论文

Evolution of composite fouling on a vertical stainless steel surface caused by treated sewage

Cheng ZAN, Lin SHI, Xiujuan MA, Wenyan YANG,

期刊论文

复合浇筑式沥青钢桥面铺装层力学计算

朱华平,李国芬,曹牧,王宏畅

期刊论文